常用设备类型及map命令用法示例
设备类型：

(fd0) 第一个软盘
(fd1) 第二个软盘

(hd0) 第一个硬盘
(hd1) 第二个硬盘
(hd-1) 最后一个硬盘
(hd) 最后一个硬盘之后的硬盘号码，创建新的虚拟硬盘时使用

(cd0) 第一个光驱，相当于 (hd32)，由 cdrom --init 创建
(cd1) 第二个光驱，相当于 (hd33)，由 cdrom --init 创建
由于 cdrom 的识别能力太低，同时市场上的光驱设备几乎全被U盘代替，所以 (cd?) 这种格式可能面临淘汰。

(hd0,0) 第一块硬盘的第一主分区
(hd0,4) 第一块硬盘的第一扩展分区
(hd-1,0) 最后一块硬盘的第一主分区，没有 (hd-2,0) 这种格式，也没有 (hd-1,-1) 这种格式。

(hd#,0) 第一主分区(在硬盘#上)
(hd#,1) 第二主分区(在硬盘#上)
(hd#,2) 第三主分区(在硬盘#上)
(hd#,3) 第四主分区(在硬盘#上)

(hd#,4) 第一逻辑分区(在硬盘#上)
(hd#,5) 第二逻辑分区(在硬盘#上)
(hd#,6) 第三逻辑分区(在硬盘#上)
(hd#,7) 第四逻辑分区(在硬盘#上)

(hd32) 第一个光驱
(hd33) 第二个光驱
(0xFF) 最后一个光驱（hd127）

() 当前磁盘
(bd) 初始启动设备（设备包括磁盘和驱动器）
(cd) 从光盘启动后，Grub4Dos 捕获到的启动光盘，如果不是从光盘启动，则没有 (cd) 设备
(ud) Fbinst 启动方式制作的隐藏分区
(pd) PXE 网络启动设备
(nd) 网络驱动器，现已不常用（nd 已经不存在了，已经被pd代替）
(md) 内存驱动器，实现了将整个内存作为一个磁盘驱动器来访问
(rd) 随机存贮驱动器。(md) 设备访问内存是从物理地址 0 开始，而 (rd) 可以访问起始于任何基地址的内存

以数字命名的设备：
fd0 - fd126 : 0x0 - 0x7E （软盘和虚拟软盘，排除 0x21 和 0x23）
pxe : 0x21 （网络启动设备）
ud : 0x23 （Fbinst 隐藏分区）
rd : 0x7F （随机存贮驱动器）
hd0 - hd30 : 0x80 - 0x9E （硬盘和虚拟硬盘）
cd : 0x9F （捕获到的启动光盘，这个不一定正确，视 bios 而定）
hd32 - hd127 : 0xA0 - 0xFF （光盘和虚拟光盘）

设备后面跟随 +1 表示将设备的第 1 个扇区当作一个单一的文件看待：

(hd0)+1 将整个硬盘的第一个扇区当作一个文件（共 1 个扇区）
(hd0,0)+1 将整个分区的第一个扇区当作一个文件（共 1 个扇区）
(fd0)+1 将整个软盘的第一个扇区当作一个文件（共 1 个扇区）
(cd0)+1 将整个光盘的第一个扇区当作一个文件（共 1 个扇区）
(md)+1 将整个内存的第一个扇区当作一个文件（共 1 个扇区）
(rd)+1 这个比较特殊，将指定内存的所有内容当作一个文件

[注意：(rd)+1 这个标志始终代表文件，它包含存储在 (rd) 中的所有字节。]

同样可以使用 +2、+3 等，表示将前 2 个或前 3 个扇区当作单一的文件看待：

(hd0)+2 将整个硬盘的前 2 个扇区当作一个文件（共 2 个扇区）
(hd0,0)+3 将整个分区的前 3 个扇区当作一个文件（共 3 个扇区）
(fd0)+5 将整个软盘的前 5 个扇区当作一个文件（共 5 个扇区）
(cd0)+10 将整个光盘的前 10 个扇区当作一个文件（共 10 个扇区）
(md)+32 将整个内存的前 32 个扇区当作一个文件（共 32 个扇区）
(rd)+2 将指定内存的前 2 个扇区当作一个文件（共 2 个扇区）

也可以使用类似 32+5 的方法：

(hd0)512+2 将整个硬盘的第 512 个扇区之后的 2 个扇区当作一个文件（共 2 个扇区）
(hd0,0)32+3 将整个分区的第 32 个扇区之后的 3 个扇区当作一个文件（共 3 个扇区）
(fd0)1+1 将整个软盘的第 2 个扇区当作一个文件（共 1 个扇区）
(cd0)128+1 将整个光盘的第 129 个扇区当作一个文件（共 1 个扇区）
(md)0+32 将整个内存的前 32 个扇区当作一个文件（共 32 个扇区）
(rd)0+1 等效于 (rd)+1，将指定内存的所有内容当作一个文件

关于 (rd) 设备：

(rd) 设备只是对内存区域的引用，(rd) 设备所引用的内存区域是不被保护的，你可以将 (rd) 理解为指向内存块的指针。在 Grub4Dos 中，很多东西都是自由的、无保护的、没有限制的，(rd) 就是其中之一。

(rd) 不是一个 int13 设备，而仅仅是一个 grub4dos 设备。在 grub4dos 里面，存在 (rd) 设备，但进入 DOS 以后，就没有 (rd) 设备了。

(rd)+1 始终表示 (rd) 设备的整个内容，而不是第一个扇区。

通过下面的地址可以获取 (rd) 设备的信息：
set /a rdnum=*0x82CC # (rd) 设备的设备号
set /a rdbase=*0x82D0 # (rd) 设备的起始地址
set /a rdsize=*0x82D8 # (rd) 设备的总长度

通过下面的方法可以自由设置 (rd) 设备的信息：
map --ram-drive=0xFF7F # 修改 (rd) 设备的设备号
map --mem --rd-base=50000 # 设置 (rd) 设备的起始地址
map --mem --rd-size=30000 # 设置 (rd) 设备的总长度

下面的命令仅仅修改了 (rd) 设备的信息：
map --mem /FILE (rd)
这里的 (rd) 指向了一块内存区域，这块内存区域中存放了 /FILE 文件的内容，但是这块内存是不被保护的，这块内存随时都可能被其他代码修改，甚至被 Grub4Dos 自身修改。

下面的命令也修改了 (rd) 设备的信息，但是 (rd) 指向的内存区域是受保护的，因为它和 (fd0) 重叠，而 (fd0) 是受保护的：
map --mem /FILE (rd)
map --mem /FILE (fd0)
map --hook
如果第一条命令和第二条命令交换一下顺序，那么结果就不一样了。

什么情况下需要使用 (rd) 设备？当你需要它的时候就去用它，如果你实在不知道什么时候需要用到 (rd)，那么很简单，不要用它。

==============================

map --status
显示磁盘仿真的状态。

map /PE.ISO (0xFF)
map --hook
将 /PE.ISO 映射到 (hd127) 仿真磁盘，/PE.ISO 必须在磁盘中连续存放，不能有碎片。

map --mem /PE.ISO (0xFF)
map --hook
先将 /PE.ISO 加载到内存，然后再映射到 (hd127) 仿真磁盘，/PE.ISO 可以有碎片。

map --mem=-2880 /FLOPPY.IMG (fd0)
map --hook
先将 /FLOPPY.IMG 加载到内存，然后再映射到 (fd0) 仿真软盘，(fd0) 将占用至少 1440KB 的内存。

map --mem --top /PE.ISO (0xFF)
map --hook
将 /PE.ISO 加载到高端内存，然后再映射到 (hd127) 仿真磁盘，把镜像加载到高位内存就不能使用 gzip 压缩，两者不能同时实现。
在 grub4dos 中，内存在 3.25G 处被分成了高端内存和低端内存两端，镜像不能跨 3.25G 这个点。如果你的内存小于 3.25G，你就没有高端内存可用。

map --unmap=0xFF
map --rehook
卸载 (hd127) 仿真磁盘。不能使用 --unmap=(0xFF) 的方法卸载，--unmap= 后面必须是数字。
--rehook 用于停止仿真盘并释放内存，相当于 --unhook 然后 --hook（这样看来，map --unhook 命令似乎不会被单独使用了）

map --unmap=0,0x80,0xFF
map --rehook
卸载多个仿真磁盘。

map --unmap=0:0xFF
map --rehook
卸载所有仿真磁盘。

如果要通过设备名的方法卸载某个设备，可以这样做：
map (hd127) (hd127)
map --rehook

map --read-only /FLOPPY.IMG (fd0)
map --hook
(fd0) 只能读，不能写，防止 /FLOPPY.IMG 文件被破坏。
映射到仿真盘中的文件都是可以修改的，无论是 IMG、ISO、VHD 等，除非使用 --read-only 参数。

map --fake-write /FLOPPY.IMG (fd0)
map --hook
(fd0) 处于假写状态，可以写入数据，但并未记录到 (fd0) 上，防止 /FLOPPY.IMG 文件被破坏。

map --unsafe-boot /FLOPPY.IMG (fd0)
map --hook
这个参数不知道是什么作用，大概是允许修改 (fd0) 的引导扇区。

map ---disable-chs-mode /FLOPPY.IMG (fd0)
map --hook
禁用 (fd0) 的 CHS 访问功能。

map --disable-lba-mode /FLOPPY.IMG (fd0)
map --hook
禁用 (fd0) 的 LBA 访问功能。

map 命令还可以用来修改 (rd) 随机存储器的信息，上面已经说过了。

[注：其他 map 参数似乎不怎么常用，也不太理解其含义，这里就不总结了]

[注意：在map命令行中，(hdm,n)+1 式的写法被解释成代表整个(hdm,n)分区，而不仅仅是此分区的第一扇区。]

[注意：--unhook 的仿真盘，如果没有 --unmap，则在需要的时候会自动 --hook。]

==============================

关于 map 命令的磁盘交换：

打算把当前设备映射为(hd0)
map () (hd0)
打算把(hd0)映射为当前设备
map (hd0) ()
#开始执行映射
map --rehook
